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Abstract

Traditionally in the literature on local public goods it is assumed
that each local public good is a selection from a convex space. In this
paper existence of equilibrium is shown for a class of finite models
where local public goods are selections from abstract, possibly non-
convex, commodity spaces. Consumers are free to migrate between
regions. Equilibrium are supported by a system of personalized valu-
ations. It is demonstrated that consumers not only must face a system
of personalized valuations in equilibrium but must also, in general, face
a different system of personalized valuations out of equilibrium. These
equilibria are shown to lie in the core.
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1 Introduction

In this paper we introduce a system of potentially non-linear prices, we
call valuations, that support Pareto optimal allocations as equilibrium for
a model with a finite number of consumers and a central government free to
choose a public project from a set of public projects for each of a finite num-
ber of regions. Consumers are free to migrate between regions. Equilibrium
are supported by a system of personalized valuations. It is demonstrated
that consumers not only must face a system of personalized valuations in
equilibrium but must also, in general, face a different system of personalized
valuations out of equilibrium.1

Tiebout (1956) theorized that, with a sufficiently large number of jurisdic-
tions, migration would lead to near efficient provision of local public goods.
In modelling local public good economies, Tiebout imposed no restrictions
on the nature of the local public goods except that consumption by any one
consumer does not diminish the quantity of any local public good available
for any other consumer and local public goods are not excludable within each
region. Any consumer who resides in the region in which a local public good
is provided may consume the public good. Since Tiebout, a number of papers
have clarified when Tiebout equilibria exist and when Tiebout equilibria are
Pareto optimal. However, it is traditional in the literature that each local
public good may easily be quantified by picking a number on the real line
and that each local public good is infinitely divisible. This is true of Bewley
(1981), Ellickson (1973) and Wooders (1978, 1980, 1989). It is clear that
not all public goods may be infinitely divisible or characterized by picking a
number on the real line (for example, building a bridge over a river or the
exploration of outer space).

In Mas-Colell (1980), Mas-Colell introduced the concept of a valuation
function to allow Pareto optimal allocations of pure public goods to be im-
plemented where the pure public goods are elements of an abstract (possibly
non-convex) commodity space. An element of such a commodity space is
called a public project. A valuation function assigns, for each element of the

1These valuations have more recently been called “conjectural” valuations. Consumers
have to know that the valuations they face may be different out of equilibrium so that
the equilibrium allocation is the “best” affordable allocation under the equilibrium alloca-
tion of consumers amongst regions and the “out of equilibrium” allocation of consumers
amongst regions.
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commodity space, an individual value for each consumer. This valuation is
interpreted as the amount each consumer must pay to consume that public
project. In this paper it is shown that Pareto optimal allocations of local
public projects may be supported with a valuation system. The form of valu-
ation system required depends on how each consumers preferences change as
any consumer migrates. Further, in this paper it is shown that if the concept
of valuation equilibrium is restricted in such a way that the valuation of each
public project must be non-negative then the set of “cost share” valuation
equilibrium lie in the core.

In Section 2 I describe the class of models used to demonstrate the Propo-
sitions to follow. An allocation consists of an assignment of a local public
project to each region, private goods to each consumer and the assignment
of consumers to regions. Each assignment of local public projects to regions
is an element of an abstract (possibly non-convex) commodity space. Three
candidate valuation systems are considered. Each valuation system is an
analogue of a price system to be found in Manning (1993) and Wooders
(1989) in models with infinitely divisible local public goods. Production in
this paper and Mas-Colell (1980) may be viewed as performed by a central
government. Unlike Diamantaras and Gilles (1993), all consumers may affect
production opportunities. Production of the local public project may there-
fore be interpreted as potentially involving the services of all consumers in
that jurisdiction.

The class of models with local public projects I introduce allows for any
form of congestion in consumption and production.

In Section 3 three Second Welfare Theorems are proved for classes of mod-
els with complete personalized, personalized and non-personalized valuation
systems. A complete personalized valuation system is a valuation system
such that any consumer’s valuation may change as he (she) or any other
consumer migrates. In the first Second Welfare Theorem, non-anonymous
crowding in consumption and production may occur. It is shown that any
Pareto optimal allocation may be supported as a complete personalized val-
uation system. In the second Second Welfare Theorem, the crowding in
consumption is restricted. Consumers may not enjoy higher utility associ-
ated with the same allocations as the assignment of consumers to regions
changes. In addition, production opportunities do not expand as consumers
move away from the Pareto optimal assignment of consumers to regions. As
a consequence, it is shown that the valuation system may be constrained to
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the set of personalized valuation systems. A personalized valuation system
is a valuation system such that any consumer’s valuation of a local public
project may differ from that of any other consumer but will not change as he
(she) or any other consumer migrates. In the third Second Welfare Theorem
consumer preferences are further restricted to be globally the same. There-
fore, the valuation system may be constrained to the set of non-personalized
valuation systems. A non-personalized valuation system is a valuation sys-
tem such that every consumer’s valuation of each local public project is the
same.

Unlike models with infinitely divisible public goods and linear Lindahl
prices, residence taxes are never needed. Valuations may be chosen such
that residence taxes are implicit.

In section 4 continuity of the prices of private goods is examined. Ex-
tensions of the model in Section 2 are considered in Section 5. It is shown
that the results of Section 3 and Section 4 are robust to the introduction of
decentralized production, intermediate local public projects and the produc-
tion of private goods. In addition, conditions on the primitives sufficient to
ensure that the valuations faced by any consumer only depend on “regional”
characteristics (the characteristics of other consumers in the same region) are
given.

All proofs appear in an Appendix.

2 The Model

The model may briefly be described as follows: there are L private com-
modities, aggregate consumption of which is denoted by x ∈ ℜL, there are I
consumers and J regions. We use the convention L = {1, . . . , l, . . . , L} and
similarly for I and J .

Allocations of consumers among regions are written as partitions of I, S,
where #S = J . The set of all possible partitions of the set of all consumers
I is ZJ . In Sections 4 and 5 the constraint that there be J regions is relaxed
so that the set of all possible partitions of consumers becomes Z. All the
definitions to follow in this section extend from ZJ to Z in a natural fashion.

Associated with each region j is a local public project yjS. Often we will
write the vector of local public projects (yjS)J as yS. If the vector of local
public projects does not change as the partition of consumers changes, say
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from S1 to S2, then we say yS1
= yS2

.

2.1 Production

The set of all possible vectors of local public projects is YJ , where YJ = Π⋆
ZJ
YS

and where YS is the set of all possible vectors of local public projects available
under the partition of consumers S.2 It is possible that no local public project
is provided in any region so 0 ∈ YS for all partitions S. The cost of any vector
of local public projects is given by a function C: YJ → ℜL

+. The cost function
C is assumed throughout to be proper in YJ .

3 This ensures that the set of
feasible allocations is compact.

A production program is a J + L-tuple (yS, xS) where xS is the vector of
private goods left after production of local public projects yS, both relative
to the partition S.

2.2 Consumers

Consumers are free to reside or not to reside in any region.
Each consumer is only endowed with a non-negative vector of private

commodities wi ∈ ℜL
+ \ {0}.

If any consumer resides in region j then that consumers consumption of
local public projects is (0, . . . , yjS, . . . , 0) or more simply yj

S
. The consumption

vector of consumer i, ziS, when residing in region j is (yj
S
, xi

S), where xi
S

is vector of private commodities consumed and yj
S
is the consumption of

local public projects by consumer i relative to the partition S. Aggregate
consumption is therefore zS where zS = (yS, xS) and xS =

∑

xi
S.

Each consumer’s utility is a function of his (her) consumption of public
projects, money and the composition of the population of the region in which
he (she) resides. If consumer i resides in region j then the presence of con-
sumer i provides a service (disservice) to all residents in region j. Further,

2Suppose that {AS1
, . . . , ASm

} is a collection of sets, indexed by the partitions Z =
{S1, . . . , Sk, . . . , Sm}. We define the star product of this indexed collection of sets, denoted
by Π⋆

Z
ASk

, to be the set of all m-tuples (∅, . . . , xSk
, . . . , ∅) such that xSk

∈ ASk
, for each

k = 1, ...,m. Instead of writing elements of Π⋆

Z
ASk

in m-tuple form they will be collapsed
to 1-tuple form as follows: (∅, . . . , xSk

, . . . , ∅) is written as xSk
for all k = 1, ...,m.

3That C is proper in Y means that the preimage of any compact set in ℜL is a compact
set in Y .
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the presence of each resident of region j provides a service (disservice) to
consumer i. Therefore, the commodity space of each consumer is taken to
include the residence choice of all consumers. Preferences for each consumer
i are represented by the complete preordering ≻iover X i

J where X i
J = Π⋆

ZJ
X i

S

and X i
S ⊂ YS ×ℜL, for all partitions S in ZJ . We assume that wi ∈ X i

S, for
all partitions S in ZJ .

In general each consumer pays a complete personalized valuation on ZJ

for local public projects V : I × YJ → ℜ. The function V can be represented
as a vector V = (V i(yS)). It is assumed throughout that each V i is an upper
semi-continuous function V i: YJ → ℜ for all consumers i.

Sometimes we can restrict the valuation each consumer pays to a person-
alized valuation for local public projects or a non-personalized valuation for
local public projects charasterized by property (1) or properties (1) and (2),
respectively.

Property 1 for every consumer i, V i(yS) = V i(yŜ) for every (yS, x
i
S) in

X i
S, (yŜ, x̂

i

Ŝ
) in X i

Ŝ
, S, Ŝ in ZJ , such that yS = yŜ.

Property 2 for every pair of consumers i and i′, V i(yS) = V i′(yS) for
every (yS, x

i
S) in X i

S, (yS, x
i′

S) in X i′

S and partition S in ZJ .

2.3 Feasibility and Efficiency

An allocation is the J+LI-tuple (yS, (x
i
S)). An allocation (yS, (x

i
S)) is feasible

if yS ∈ YS, (yS, x
i
S) ∈ X i

S for all consumers i and C(yS) +
∑

xi
S ≤ wS.

A feasible allocation (yS, (x
i
S)), S ∈ ZJ , is J-Pareto optimal if there is no

other feasible state (y′S′, (x̂i

Ŝ
)), S ′ ∈ ZJ , such that ẑi

Ŝ
�i ziS for all consumers

i and ẑi
Ŝ
≻i ziS for at least one consumer i.

2.4 Equilibrium

In the definition of valuation equilibrium we use the normalized price simplex
for the private commodities,

△ ≡ {q ∈ ℜL
++|

∑

L

ql = 1}.

The prices of private commodities are not personalized so the prices of private
commodities are represented by the vector valued function p: YJ → △.
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Definition 2.1 A feasible allocation (y⋆S⋆, (x⋆i
S⋆)) is a complete personal-

ized valuation equilibrium on ZJ if there exists a price system p: YJ → △ and
a system of complete personalized valuations for consumers V : I × YJ → ℜ,
such that

(1)
∑

V i(y⋆S⋆) = pS⋆(y⋆S⋆)C(y⋆S⋆), (budget neutrality)
(2) for every consumer i, z⋆iS⋆ maximizes ≻i on the budget set

{(yS, xS) ∈ X i
J |pS(yS)xS + V i(yS) ≤ pS(yS)w

i},

(3) y⋆S⋆ maximizes surplus
∑

V i(yS)− pS(yS)C(yS) on YJ .

A personalized valuation equilibrium and a non-personalized valuation
equilibrium are defined analogously.

Definition 2.2 A feasible allocation (y⋆S⋆, (x⋆i
S⋆)) is a complete personal-

ized cost share equilibrium if it is a valuation equilibrium and for all consumers
i and y in Y , V i(y) ≥ 0.

A personalized cost share equilibrium and a non-personalized cost share
equilibrium are defined analogously.

Remark The model of Mas-Colell (1980) can be obtained by letting
J = 1 and L = 1. In this sense the model here is a generalization of the
model of Mas-Colell.

However, the model in this paper may also be viewed as a specialization
of the model of Mas-Colell. In Mas-Colell the commodity space was any
abstract set Y . Consumers were, subject to their budget constraint, free to
demand any allocation in Y . Note that an example of an abstract space Y is
Π⋆

ZJ
YS. Restricting attention to abstract spaces with the special form Π⋆

ZJ
YS

allows the very general form of valuations allowed for in Mas-Colell to be
specialized so that the economic content of the model can be expanded.

3 Welfare and Existence

The set of allocations strictly preferred by consumer i to any allocation z⋆S⋆

= (y⋆S⋆ , (x⋆i
S⋆)) relative to the partition S is

P i
S(z

⋆
S⋆) = {(yS, xi

S) ∈ X i
S|(yS, xi

S) ≻i (y⋆S⋆, x⋆i
S⋆)}.
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The set of all allocations strictly preferred by consumer i to any allocation
z⋆S⋆ = (y⋆S⋆, (x⋆i

S⋆)) is

P i(z⋆S⋆) = Π⋆
ZJ
P i
S(z

⋆
S⋆).

a.1 for every consumer i, �icontinuous, complete, reflexive and transitive.
a.2 for every consumer i, �iis convex and monotonic in the private com-

modity subspace, for each vector of local public projects under each partition.
a.3S for every consumer i, for all vectors of local public projects yS such

that X i
S(yS) 6= ∅, P i

S(yS) 6= ∅. (non-satiation)
a.4 for each consumer i, for all (yS, (x

i
S)) such that (yS, x

i
S) is in X i

S for
all i and xi

S > 0, (yS, x
i
S) ≻i (yS′, 0) for any (yS′, 0) in X i

S′ and for any S ′ in
ZJ . (essentiality)

Theorem 3.1 Under (3S)ZJ
, if the allocation (y⋆S⋆, (x⋆i

S⋆)) is a complete
personalized, personalized or non-personalized valuation equilibrium on ZJ

then it is J-Pareto optimal.

Theorem 3.2 Under 1,2,(3S)ZJ
and 4, if the allocation (y⋆S⋆, (x⋆i

S⋆)) is
J-Pareto optimal then it is a complete personalized valuation equilibrium on
ZJ .

The set of feasible allocations under any partition S is

FS = {(yS, xS) ∈ YS ×ℜL|C(yS) + xS ≤ w}.

a.5S for every consumer i, FS ⊆ FS⋆ and P i
S(z

⋆
S⋆) ⊆ P i

S⋆(z⋆S⋆) (nested-
ness).

Theorem 3.3 Under 1,2,(3S)ZJ
,4 and (5S)ZJ

, if the allocation (y⋆S⋆, (x⋆i
S⋆))

is J-Pareto optimal then it is a personalized valuation equilibrium on ZJ .

a.6 for every pair of consumers i and i′, P i
S⋆(z⋆S⋆) = P i′

S⋆(z⋆S⋆) (similarity).

Theorem 3.4 Under 1,2,(3S)ZJ
,4,(5S)ZJ

and 6, if the allocation (y⋆S⋆, (x⋆i
S⋆))

is J-Pareto optimal then it is a non-personalized valuation equilibrium on ZJ .

Example (Existence) Consider a model with two private goods. Let
there be two consumers, I = {1, 2}, each consumer i with consumption sets
X i

S1
= R2

+, X
i
S2

= R2
+ defined relative to the partitions S1 = {{1, 2} , φ}

and S2 = {{1} , {2}}. Each consumer has an endowment w1 = (3, 0) and
w2 = (0, 3).
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Let there be only one local public project provided in any of two regions
in which any consumer resides, whether the two consumers reside together
or apart. Since there is only one local public project provided under each
partition, each partition itself can be viewed as a public project, in which
case the cost of providing each partition is CS1

= (1, 1) and CS2
= (0, 2),

respectively.
Each consumer has a preference ordering represented by U i

(

xi
S1

)

=

3
√

xi1
S1

+
√

xi2
S1

and U i
(

xi
S2

)

= 2
√

xi1
S2

+ 2
√

xi2
S2

for every private commod-

ity bundle, xi = (xi1, xi2) ∈ R2
+, for i = 1, 2.

The sets of feasible allocations are FS1
= {xS1

∈ ℜ2 | xS1
≤ (2, 2)} and

FS2
= {xS2

∈ ℜ2 | xS2
≤ (3, 1)}. Nestedness is violated by FS1

and FS2
.

Consider the allocation xi
S1

= (1, 1), i = 1, 2. Since x1
S1

+ x2
S1

+ CS1

= (3, 3) = w1 + w2. By inspection xi
S1

= (1, 1), i = 1, 2 is Pareto optimal
(but not the only Pareto optimal allocation). The utility enjoyed by both
consumers at the Pareto optimal allocation is U i(1, 1) = 3

√
1 +

√
1 = 4,

i = 1, 2. The Pareto preferred sets generated by xi
S1

= (1, 1), i = 1, 2 are

P i
S1

= {xi
S1

∈ ℜ2
+ | 3

√

xi1
S1

+
√

xi2
S1

> 4} and P i
S2

= {xi
S2

∈ ℜ2
+ | 2

√

xi1
S2

+

2
√

xi2
S2

> 4}, i = 1, 2. Nestedness is violated by P i
S1

and P i
S2
.

Inspection reveals that the prices pS1
= (3/4, 1/4) and pS2

= (1/2, 1/2)
seperate the feasible and Pareto preferred sets and that pS1

= (3/4, 1/4) will
not seperate the production and Pareto preferred sets under the partition S2.

The value of the endowment of each consumer at the prices under the
partition S1 is pS1

.w1 = 9/4 and pS1
.w2 = 3/4 and the value of the Pareto

optimal allocation under the partition S1 is pS1
.x1

S1
= 1 and pS1

.x2
S1

= 1.
Budget balance is maintained at the Pareto optimal allocation by imposing
valuations of V 1

S1
= 5/4 and V 2

S1
= −1/4 on the two consumers.

The value of the endowment of each consumer at the prices under the
partition S2 is pS2

.w1 = 3/2 and pS2
.w2 = 3/2. The cheapest allocation under

S2 and the prices pS2
= (1/2, 1/2) that is at least as good as xi

S1
= (1, 1),

i = 1, 2 is xi
S2

= (1, 1), i = 1, 2. The value of xi
S2

= (1, 1), i = 1, 2 under
the prices pS2

= (1/2, 1/2) is unity. To ensure that any allocation under
S2 preferred to xi

S2
= (1, 1), i = 1, 2 by either consumer is too expensive

valuations of V 1
S2

= 1/2 and V 2
S2

= 1/2 must be imposed. 2
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4 The Core

4.1 Defecting Coalitions and the Core

We allow defecting coalitions to form. We adapt the notion of the Core, intro-
duced by Foley (1970), to economies with local public projects. The notion
of the Core we introduce incorporates the idea that all defecting coalitions
have access to the production technology and can by some means exclude
others from enjoying the public projects they produced.

Each defecting coalition forms a central government that is responsible for
the production of all local public projects using the endowment of the defect-
ing coalition. Each defecting coalition may form any jurisdiction structure it
wishes.

A defecting coalition of consumers consists of a subset of I, C where #C =
IC. When consumers defect from the grand coalition so that society is com-
posed of two or more coalitions each defecting coalition C forms a jurisdiction
structure with JC regions. We use the convention JC = {1C, . . . , jC, . . . , JC}.

Consumer residence choice when a member of the defecting coalition C ⊂
I is indicated by the partition of C, SC, where #SC = JC. The set of all
possible partitions of C is ZC. Here it is accepted that any partition of all
consumer in I, S, may be into any number of regions. All the definitions of
Section 2 hold here with respect to any partition of all consumers (the grand
coalition) or S in Z.

Associated with each region jC is a non-empty space Y j
SC

of local public

projects, where a local public project is yjSC
. It is possible that no local public

project is provided in any region, so 0 ∈ Y j
SC

for every region jC. Often we

will write the vector of local public projects (yjSC
)J as ySC

.
The set of all possible vectors of local public projects is YC, where YC =

ΠZC
YSC

. The cost of any vector of local public projects is given by a function
C: YC → ℜL

+, for every defecting coalition C. The cost function C is assumed
to be proper in YC. A production program of the defecting coalition is a
JC + L-tuple (ySC

, xSC
).

If any consumer resides in region jC then that consumers consumption
of local public projects is (0, . . . , yjSC

, . . . , 0) or more simply yj
SC
. The con-

sumption vector of consumer i, a member of coalition C, when residing in
region jC , is ziSC

where ziSC
= (yj

SC
, xi

SC
), where xi

SC
is the vector of private
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commodities consumed and yj
SC

is the consumption of local public projects

by consumer i relative to partition S. Aggregate consumption is therefore
zSC

where zSC
= (ySC

, xSC
) and xSC

=
∑

C x
i
SC
.

Preferences for each consumer i are represented by the complete preorder-
ing ≻i over X i where X i is now defined for every partition of every coalition
(including the grand coalition) that consumer i is a member of. Without loss
of generality, let X i = ΠC⊆IΠ

⋆
ZC
X i

SC
.

It is maintained in this section that there are no increasing returns to
coalition size (NIRCS). Defecting coalitions do not have access to a technol-
ogy superior to the grand coalition. Let D be any subset of I,D ⊆ I.

(NIRCS) Consider any defecting coalition C ⊆ D, their allocation amongst
JC regions and the set of production opportunities defined with respect to the
partition of C, FSC

. Consider the residual population D\C and the set of
production opportunities defined with respect to any allocation of these con-
sumers amongst JD\C regions and the set of production opportunities defined
with respect to the partition of D\C, FSD\C

. Then, where SD = SC ∪ SD\C,

FSC
⊕ FSD\C

⊆ FSD
4.

Intuitively, no coalitions C and D\C can produce an allocation that their
union cannot. In particular, no coalitions C and I\C can produce an alloca-
tion that the grand coalition cannot.

An allocation for the defecting coalition C is the JC+LIC-tuple (ySC
, (xi

SC
)C).

An allocation (ySC
, (xi

SC
)C) is C-feasible if ySC

∈ YSC
, xi

SC
∈ X i

SC
for all con-

sumers i and C(ySC
) +

∑

C x
i
SC

≤ ∑

C w
i.

A feasible allocation (yS, (x
i
S)I) is Pareto optimal if there is no other

feasible state (ŷŜC
, (x̂i

ŜC
)C) such that ẑi

ŜC
�i ziS for all consumers i in I and

ẑi
ŜC

≻i ziS for at least one consumer i in I.
An allocation (yS, (x

i
S)I) is blocked by a coalition C 6= ∅ if there exists a

C-feasible allocation (ySC
, (xi

SC
)C) such that xi

SC
�i xi

S for all consumers i in
C and xi

SC
≻i xi

S for some consumer i in C. An allocation is in the core if it
cannot be blocked.

Example (The Core) Consider the example of Section 3. The defecting
coalitions are C1 = {1}, C2 = {2}. Each defecting coalition has only one
possible partition (or one partition worth considering) SC1 = {{1}} and SC2 =

4Y ⊕ Z = {(y, z, x1 + x2) | (y, x1) ∈ Y, (z, x2) ∈ Z}.
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{{2}}.
Assume there is only one local public project provided under each par-

tition, each partition itself can be viewed as a public project, in which case
the cost of providing each partition is CSC1

= (0, 0) and CSC2
= (0, 2), re-

spectively.
Each consumer i has a consumption set X i

SC1
= R2

+, X
i
SC2

= R2
+. Each

consumer has a preference ordering represented by U i
(

xi
SCi

)

= 2
√

xi1
SCi

+

2
√

xi2
SCi

for every private commodity bundle, xi = (xi1, xi2) ∈ R2
+, for i = 1, 2.

4.2 Results

Theorem 4.1 Under (3S)Z, if the allocation (y⋆S⋆, (x⋆i
S⋆)I) is a complete per-

sonalized, personalized or non-personalized cost share equilibrium (on Z) and
is Pareto optimal then it is in the Core.

Theorem 4.2 Under 1,2,(3S)ZC
and 4, if the allocation (y⋆S⋆, (x⋆i

S⋆)I) it
is in the Core then it may be supported as a complete personalized cost share
equilibrium on Z when L = 1.

Theorem 4.3 Under 1,2,(3S)Z,4 and (5S)Z, if the allocation (y⋆S⋆ , (x⋆i
S⋆)I)

is in the Core then it may be supported as a personalized cost share equilibrium
on Z when L = 1.

Theorem 4.4 Under 1,2,(3S)Z,4,(5S)Z and 6, if the allocation (y⋆S⋆, (x⋆i
S⋆)I)

is in the Core then it may be supported as a non-personalized cost share equi-
librium on Z when L = 1.

Theorem 4.5 There exists an economy such that the core is larger than
the set of cost share equilibria when L > 1.

Proof Consider that allocation (yS1
, xS1

) with x1S1
= x2S1

= (1, 1). Since
x1
S1

+ x2
S1

+ C(yS1
) = (3, 3) = w1 + w2, (yS1

, xS1
) is a feasible allocation. It

is immediate that (yS1
, xS1

) is Pareto optimal. In addition, no consumer can
unilaterally improve on (yS1

, xS1
). By NIRCS neither agent has the resources

to produce yS1
as producing yS1

would require some of both private goods.
Any allocation (yS2

, xS2
) that is feasible for consumer 2 to produce unilater-

ally can yield consumer 2 a utility no higher than 1, less than the 4 attained
at (yS1

, xS1
).

12



The following price system and valuations support the allocation (yS1
, xS1

)
as a valuation equilibrium:

Since V 2(yS1
) = −1/4 < 0, (yS1

, xS1
) is not a cost share equilibrium.

The price system p(yS1
) is unique. If V 2(yS1

) ≥ 0 it must be the case
that V 2(yS1

) ≤ 1. For any such valuation system, (yS1
, xS1

) is not a valuation
equilibrium.

5 Relationship to the Literature

Why should we care about the model of Section 2? One reason we should
care about the model of Section 2 is it has as a special case an important
class of models: models with thresh-hold production of public goods. Bliss
and Nalebuff (1984), Lagunoff (1994) and others have characterized partial
information equilibrium and have designed implementation schemes for mod-
els where public goods may only be supplied in some fixed quantity or not
supplied and may only be supplied if at least some fixed number of agents
(maybe one) agree to contribute towards provision. Bliss and Nalebuff offer
as examples: opening a window, donating a library or jumping into save a
drowning swimmer. In the model of Lagunoff there are a fixed and finite
number of consumers distributed among two regions, who each would have
a utility of unity from a local public project supplied and zero if it were not
supplied in their region. Each consumer is endowed with one unit of one
private good. Consumers may consume all of the private good, in which
case their utility from consuming the private good would be some number
on the interval [0, 1), and contribute nothing to the production of the local
public project or contribute all of their endowment of the private good to the
production of their local public project. If not enough consumers contribute
then the local public project is not supplied the contributions are lost to the
contributors.

Lagunoff considers two social choice mechanisms, a voluntary mechanism
and a majority voting mechanism, to decide the contribution level in each of
the two regions. Consumers are free to migrate between the two regions and
an evolutionary procedure is used to make a prediction about the “winning”
social choice mechanism, i.e. the social choice mechanism the consumers
migrate to.

How might we specialize the model of Section 2 so that such public “pro-

13



jects” can be represented?
Consider the following specialization of the model of Section 2: Let the

number of private goods L = I (the private good endowment of each con-
sumer is differentiated), the number of regions J = 2 and the partition of all
I consumers amongst the two regions be {I1, I2}.

It is convenient to index local public projects by the subset of residents
who contribute towards production of their local public project. Any region
j with a population Ij has #P(Ij) local public projects, where P(Ij) is the
power set of Ij . Let Dj be any element of P(Ij). n is the “thresh-hold”.
The set of local public projects available to region j relative to the partition
S is P(Ij).

The preferences of any consumer i residing in region j are represented by

U i =



















0; if i ∈ Dj

αi, αi ∈ [0, 1) ; if i ∈ Ij\Dj

1; if i ∈ Dj

1 + αi, αi ∈ [0, 1) ; if i ∈ Ij\Dj

and #Dj < n,
and #Dj < n,
and #Dj ≥ n,
and #Dj ≥ n.

The cost of production is represented by a function C:P(Ij) → P(Ij) such
that

C(D1,D2) =



















(D1,D2) if #D1 ≥ n and #D2 ≥ n,
(D1, ∅) if #D1 ≥ n and #D2 < n,
(∅,D2) if #D1 < n and #D2 ≥ n,
(∅, ∅) if #D1 < n and #D2 < n.

6 Conclusion

Some effort has already been made in the literature to show that Lindahl
pricing schemes may be implemented as lump sum taxes rather than linear
prices. For instance, Wooders (1992) has shown that any Lindahl equilib-
rium, in a sufficiently replicated economy, may be implemented using lump
sum taxes. Barro and Romer (1987) call the equivalence between the linear
pricing mechanism and the lump sum pricing mechanism the package deal
effect. By a specialisation of the class of models presented here, this paper
shows that the package deal effect holds for finite economies with local public
goods. For instance, it is immediate that the package deal effect holds for
the class of models in Manning (1993).

14



7 Appendix

Proof of Theorem 3.1
Suppose that (y⋆S⋆ , (x⋆i

S⋆)I) is a valuation equilibrium but is not Pareto op-
timal. Suppose that (yS, (x

i
S)I) is feasible and Pareto dominates (y⋆S⋆, (x⋆i

S⋆)I).
We know that such an allocation may exist by a.3. This implies that for at
least one i

pS(yS)x
i
S + V i(yS) > pS(yS)w

i,

and for all i

pS(yS)x
i
S + V i(yS) ≥ pS(yS)w

i.

Therefore

pS(yS)
∑

I

xi
S +

∑

I

V i(yS) > pS(yS)w,

which implies

∑

I

V i(yS) > pS(yS)[
∑

I

(wi − xi
S)] = pS(yS)C(yS),

implying that y⋆S⋆ does not maximize surplus
∑

I V
i(yS) − pS(yS)C(yS)

and so contradicting condition (3) of the definition of valuation equilibrium.2

Proof of Theorem 3.2
Part 1 Let z⋆S⋆ = (y⋆S⋆, (x⋆i

S⋆)I) be a Pareto optimal allocation. Define

P i
S(yS) ≡ {xi

S ∈ X i
S(yS)|(yS, xi

S) ≻i (y⋆S⋆, x⋆i
S⋆)}

and Ri
S(yS) ≡ {xi

S ∈ X i
S(yS)|(yS, xS) �i (y⋆S⋆, x⋆i

S⋆)}.

The following are immediate: P i
S(yS) and Ri

S(yS) are nonempty, open
(closed), convex and bounded below. Define

PS(yS) ≡
∑

I

P i
S(yS) + C(yS)− w and RS(yS) ≡

∑

I

Ri
S(yS) + C(yS)− w.

The following are immediate: PS(yS) and RS(yS) are nonempty, open
(closed), convex and bounded below. In addition Ri

S(yS) is the closure of
P i
S(yS) and RS(yS) is the closure of PS(yS).
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Claim Under 1, 2 and (3S)Z for any partition S in Z and any local public
project yS in YS there exists a price vector p′S(yS) in △ and a vector of private
goods x′i

S(yS) in Ri
S(yS) such that

(i) p′S(yS)x
′i
S(yS) = inf{pS(yS)xS|xS ∈ P i

S(yS)}, for all i,
(ii)

∑

I x
′i
S(yS) + C(yS)− w ≥ 0,

(iii) x′i
S(yS) = x⋆i

S⋆(y⋆S⋆) = x⋆i
S⋆ , for all consumers i, if yS = y⋆S⋆.

(See Diamantaras and Gilles (1994) for a proof).

Part 2 We define a valuation function V : I × Y → ℜ by

V i(yS) =
{

pS(yS)w
i − pS(yS)x

′i
S(yS); for all yS such that X i

S(yS) 6= ∅, for all i,
0; otherwise,

where

pS(yS) =

{

p′S(yS); for all yS such that X i
S(yS) 6= ∅, for all i,

0; otherwise.

V i(yS) is finite by a.3. We now check the three requirements of Definition
2.1.

Condition (1) By the feasibility of (y⋆S⋆ , (x⋆i
S⋆)I) and the definition of V ,

∑

I

V i(y⋆S⋆) = p′S⋆(y⋆S⋆)
∑

I

wi − p′S⋆(y⋆S⋆)
∑

I

x⋆i
S⋆ = p′S⋆(y⋆S⋆)C(y⋆S⋆).

Condition (3) By claim (ii) and p′S(yS) ≫ 0, for yS 6= y⋆S⋆ and yS such
that X i

S(yS) 6= ∅, for all i,

p′S(yS)
∑

I

x′i
S(yS) + p′S(yS)C(yS) ≥ p′S(yS)w,

which implies

∑

I

V i(yS) = p′S(yS)w − p′S(yS)
∑

I

x′i
S(yS) ≤ p′S(yS)C(yS),

while

∑

I

V i(y⋆S⋆) = p′S⋆(y⋆S⋆)w − p′S⋆(y⋆S⋆)
∑

I

x′i
S⋆(y⋆S⋆) ≤ p′S⋆(y⋆S⋆)C(y⋆S⋆).
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Therefore

0 =
∑

I

V i(y⋆S⋆)− p′S⋆(y⋆S⋆)C(y⋆S⋆) ≥
∑

I

V i(yS)− p′S(yS)C(yS).

If yS is such that X i
S(yS) = ∅ for some i then V i(yS) = 0 for all i, by

assumption. Therefore

0 =
∑

I

V i(y⋆S⋆)− pS⋆(y⋆S⋆)C(y⋆S⋆) ≥
∑

I

V i(yS)− pS(yS)C(yS)

as
∑

I V
i(yS)− pS(yS)C(yS) = −pS(yS)C(yS) ≤ 0.

It is immediate that condition (3) of the definition of valuation equilib-
rium holds.

Condition (2) Note that since V i
S⋆(y⋆S⋆) = p′S⋆(y⋆S⋆)[wi − x⋆i

S⋆ ] it immedi-
ately follows that pS⋆(y⋆S⋆)x⋆i

S⋆ + V i(y⋆S⋆) = pS⋆(y⋆S⋆)wi for every consumer i.
Thus (y⋆S⋆, x⋆i

S⋆) is indeed in the budget set of each consumer i.
Consider any (yS, x

i
S) in P i

S(z
⋆i
S⋆), for any consumer i. By the claim above,

associated with the public project yS are vectors x′i
S(yS) and pS(yS). By

definition of x′i
S(yS) and p′S(yS), p

′
S(yS)x

i
S > p′S(yS)x

′i
S(yS), which implies

p′S(yS)x
i
S + V i(yS) = p′S(yS)x

i
S + p′S(yS)w

i − p′S(yS)x
′i
S(yS) > p′S(yS)w

i > 0,

by p′S(yS) ≫ 0.

Therefore (yS, x
i
S) is not in the budget set of consumer i.2

Proof of Theorem 3.3
Part 1 As in proof of Theorem 3.2, Part 1.
Part 2 We define the valuation function V : I × Y → ℜ by

V i(yS) =































pS∗(yS∗)wi − pS∗(yS∗)x′i
S∗(yS∗);

for all yS∗such that X i
S∗(yS∗) 6= ∅, for all i,

V i(yS∗);
where yS = yS∗and is such that X i(yS) 6= ∅, for all i,
0; otherwise.

where

pS(yS) =











p′S(yS); for all yS such that X i
S∗(yS∗) 6= ∅, for all i,

p′S∗(yS∗); where yS = yS∗and is such that X i(yS) 6= ∅, for all i,
0; otherwise.

Condition (1) By the feasibility of (y⋆S∗ , (x⋆i
S∗)I) and the definition of V ,
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∑

I

V i(y⋆S∗) = p′S∗(y⋆S∗)
∑

I

wi − p′S∗(y⋆S∗)
∑

I

x⋆i
S∗ = p′S∗(y⋆S∗)C(y⋆S∗).

Condition (3) By claim (ii) and pS∗(yS∗) ≫ 0, for yS∗ 6= y⋆S∗ and yS∗

such that X i
S∗(yS∗) 6= ∅, for all i,

p′S∗(yS∗)
∑

I

x′i
S∗(yS∗) + p′S∗(yS∗)C(yS∗) ≥ p′S∗(yS∗)w,

which implies

∑

I

V i(yS∗) = p′S∗(yS∗)w − p′S∗(yS∗)
∑

I

x′i
S∗(yS∗) ≤ p′S∗(yS∗)C(yS∗),

while

∑

I

V i(y⋆S∗) = p′S∗(y⋆S∗)w − p′S∗(y⋆S∗)
∑

I

x⋆i
S∗(y⋆S∗) = p′S∗(y⋆S∗)C(y⋆S∗).

Therefore

0 =
∑

I

V i(y⋆S∗)− p′S∗(y⋆S∗)C(y⋆S∗) ≥
∑

I

V i(yS∗)− p′S∗(yS∗)C(yS∗).

For any yS = yS∗ such that X i
S(yS) 6= ∅, for all i, since since FS ⊆ FS∗

for all S,

0 =
∑

I

V i(y⋆S∗)− p′S∗(y⋆S∗)C(y⋆S∗) ≥
∑

I

V i(yS∗)− p′S∗(yS∗)C(yS∗) ≥
∑

I

V i(yS)− p′S(yS)C(yS)

for any yS in YS as p′S(yS) = p′S∗(yS∗) ≫ 0, V i(yS) = V i(yS∗) and C(yS) ≥
C(yS∗).

If yS is such that X i
S(yS) = ∅ for some i then V i(yS) = 0 for all i, by

assumption. Therefore

0 =
∑

I

V i(y⋆S∗)− pS∗(y⋆S∗)C(y⋆S∗) ≥
∑

I

V i(yS)− pS(yS)C(yS)
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as
∑

I V
i(yS)− pS(yS)C(yS) = −pS(yS)C(yS) ≤ 0.

It is immediate that condition (3) of the definition of valuation equilib-
rium holds.

Condition (2) By the argument in Theorem 3.2, (y⋆S∗, x⋆i
S∗) is indeed in

the budget set of each consumer i.
Consider any (yS∗, xi

S∗) in P i
S∗(z⋆iS∗), for any consumer i. By the claim

above (in Theorem 3.2), associated with the public project yS∗ are vectors
x′i
S∗(yS∗) and pS∗(yS∗). By definition of x′i

S∗(yS∗) and p′S∗(yS∗), p′S∗(yS∗)xi
S∗ >

p′S∗(yS∗)x′i
S∗(yS∗), which implies

p′S∗(yS∗)xi
S∗ + V i(yS∗) = p′S∗(yS∗)xi

S∗ + p′S∗(yS∗)wi − p′S∗(yS∗)x′i
S∗(yS∗)

> p′S∗(yS∗)wi > 0, by p′S∗(yS∗) ≫ 0.

Therefore (yS∗, xi
S∗) is not in the budget set of consumer i.

Consider any (yS, x
i
S) in P i

S(z
⋆i
S∗). Since P i

S(z
⋆i
S∗) ⊆ P i

S∗(z⋆iS∗), (yS∗, xi
S∗) ∈

P i
S∗(z⋆iS∗) where yS∗ = yS and xi

S∗ = xi
S . Since, by the argument above,

(yS∗, xi
S∗) lies outside the budget set so would (yS, x

i
S) by construction of

V i.2

Proof of Theorem 3.4
Part 1 As in the proof of Theorem 3.2, Part 1.
Part 2 We define the valuation function V : I × Y → ℜ by

V i(yS) =































pS∗(yS∗)wi − pS∗(yS∗)x′i
S∗(yS∗);

for all yS∗such that X i
S∗(yS∗) 6= ∅, for all i,

V i(yS∗);
where yS = yS∗and is such that X i(yS) 6= ∅, for all i,

0; otherwise.
where

pS(yS) =











p′S(yS); for all ySsuch that X i
S(yS) 6= ∅, for all i,

p′S∗(yS∗); where yS = yS∗and is such that X i(yS) 6= ∅, for all i,
0; otherwise.

Conditions 1,2 and 3 follow by Theorem 3.2. In addition, by P i
S∗(z⋆iS∗) =

P i′

S∗(z⋆i
′

S∗), x′i
S∗(yS∗) = x′i′

S∗(yS∗), and so V i(yS) = V i′(yS) for all pairs of con-
sumers i and i′ and (yS, x

i
S) ∈ X i

S, (yS, x
i′

S) ∈ X i′

S .2

Proof of Theorem 4.1
Suppose that (y⋆S⋆, (x⋆i

S⋆)I) is an extended cost share equilibrium but not
in the core. This implies that there exists a defecting coalition C ⊂ I
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that can provide a C-feasible allocation (ySC
, (xi

SC
)C) that C-Pareto domi-

nates (y⋆S⋆ , (x⋆i
S⋆)I). We know that such an allocation may exist by a.3. This

implies for at least one i in C

pSC
(ySC

)xi
SC

+ V i(ySC
) > pSC

(ySC
)wi,

and for all i

pSC
(ySC

)xi
SC

+ V i(ySC
) ≥ pSC

(ySC
)wi.

Therefore

pSC
(ySC

)
∑

C

xi
SC

+
∑

C

V i(ySC
) > pSC

(ySC
)
∑

C

wi,

which implies

∑

C

V i(ySC
) > pSC

(ySC
)[
∑

C

(wi − xi
SC
)] = pSC

(ySC
)C(ySC

),

implying that y⋆S⋆ does not maximize surplus
∑

I V
i(yS) − pS(yS)C(yS)

and so contradicting condition (3) of the definition of an extended cost share
equilibrium. 2

Proof of Theorem 4.2
We define a valuation function V : I × Y → ℜ by

V i(yS) =

{

wi − x′i
S(yS); for all yS such that X i

S(yS) 6= ∅, for all i,
0; otherwise.

V i(yS) is finite by a.3. Conditions 1, 2 and 3 are immediate by the proof
to Theorem 3.2. 2

Proof of Theorem 4.3
Immediate. 2

Proof of Theorem 4.4
Immediate. 2

20



References

1. Barro, R.J. and P.M. Romer, “Ski-Lift Pricing, with Applications to
Labour and other Markets,” American Economic Review 77 (1987),
875-890.

2. Bewley, T., “A Critique of Tiebout’s Theory of Local Public Expendi-
tures,” Econometrica 49 (1981), 713-740.

3. Bliss and B. Nalebuff, “Dragon Slaying and Ballroom Dancing,” Jour-
nal of Public Economics, 1984

4. Diamantaras, D. and R.P. Gilles, “Efficiency in Economies with a Pub-
lic Project”, Department of Economics, Temple University, Philadel-
phia, PA 19122 and Department of Economics, VPI and SU, Blacks-
burg, VA 24061, 1992.

5. Diamantaras, D. and R.P. Gilles, “The Pure Theory of Public Goods:
Efficiency, Decentralization and the Core,” Working Paper E94-01, Vir-
ginia Polytechnic Institute and State University, Blacksburgh, VA, 1994

6. Diamantaras, D., R.P. Gilles and S. Scotchmer, “Decentralization of
Pareto Optima in Economies with Public Projects and Nonessential
Private Goods,” Discussion Paper 9453, CentER for Economic Re-
search, Tilburg, Netherlands, revised 1995

7. Diamantaras, D. and R.P. Gilles, “The Pure Theory of Public Goods:
Core Equivalence,” Working Paper E94-10, Department of Economics,
VPI and SU, Blacksburg, VA 24061, 1994.

8. Ellickson, B., “A Generalization of the Pure Theory of Public Goods,”
American Economic Review 63 (1973), 417-432.

9. Gilles, R.P. and S. Scotchmer, “Decentralization in Replicated Club
Economies with Multiple Private Goods,” Working Paper E95-05, De-
partment of Economics, VPI&SU, Blacksburg.

10. Gilles, R.P. and S. Scotchmer, “Decentralization in Club Economies
with Non-Samuelsonian Local Public Goods,” Working Paper E95-04,
Department of Economics, VPI&SU, Blacksburg.

21



11. Lagunoff, R., “On the Dynamic Selection of Mechanisms for Provision
of Public Projects,” typescript, 1994.

12. Manning, J.R.A., “Local Public Goods: A Theory of the First Best”,
P.H.D. thesis, University of Rochester, 1993.

13. Manning, J.R.A., “Efficiency in Economies with Jurisdictions and Pub-
lic Projects”, typescript, 1993.

14. Manning, J.R.A., “Local Public Goods: First Best Allocations and
Supporting Prices”, typescript, 1994.

15. Manning, J.R.A., “A General Model of Valuation and Pure Public
Projects”, typesript, 1995.

16. Mas-Colell, A., “Efficiency and Decentralization in the Pure Theory of
Public Goods”, Quarterly Journal of Economics 94 (1980), 625-641.

17. Tiebout, C., “A Pure Theory of Local Public Expenditures,” Journal
of Political Economy 64 (1956), 416-424.

18. Wooders, M.H., “Equilibria, the Core, and Jurisdiction Structures in
Economies with a Local Public Good,” Journal of Economic Theory
18 (1978), 328-348.

19. Wooders, M.H., “The Tiebout Hypothesis: Near Optimality in Local
Public Good Economies,” Econometrica 48 (1980), 1467-1485.

20. Wooders, M.H., “A Tiebout Theorem,” Mathematical Social Sciences
18 (1989), 33-55.

21. Wooders, M.H., “On Convergence of Cores to Lindahl Equilibrium Out-
comes,” Department of Economics, University of Toronto, 1992.

22


